A Real-time DSP-Based Optical Character Recognition System for Isolated Arabic characters using the TI TMS320C6416T
نویسندگان
چکیده
Optical Character Recognition (OCR) is an area of research that has attracted the interest of researchers for the past forty years. Although the subject has been the center topic for many researchers for years, it remains one of the most challenging and exciting areas in pattern recognition. Since Arabic is one of the most widely used languages in the world, the demand for a robust OCR for this language could be commercially valuable. There are varieties of software based solutions available for Arabic OCR. However, there is little work done in the area of hardware implementation of Arabic OCR where speed is a factor. In this research, a robust DSP-based OCR is designed for recognition of Arabic characters. Since the scope of this research is focused on hardware implementation, the system is designed for recognition of isolated Arabic characters. An efficient recognition algorithm based on feature extraction and using a Fuzzy ART Neural Network as well as the hardware implementation is also proposed in this research. A recognition rate of 95% is reported.
منابع مشابه
Isolated Persian/Arabic handwriting characters: Derivative projection profile features, implemented on GPUs
For many years, researchers have studied high accuracy methods for recognizing the handwriting and achieved many significant improvements. However, an issue that has rarely been studied is the speed of these methods. Considering the computer hardware limitations, it is necessary for these methods to run in high speed. One of the methods to increase the processing speed is to use the computer pa...
متن کاملOptimizing Feature Selection for Recognizing Handwritten Arabic Characters
Recognition of characters greatly depends upon the features used. Several features of the handwritten Arabic characters are selected and discussed. An off-line recognition system based on the selected features was built. The system was trained and tested with realistic samples of handwritten Arabic characters. Evaluation of the importance and accuracy of the selected features is made. The recog...
متن کاملFeatures Extraction Method for Arabic Characters Based on Pixel Orientation Technique
This paper presents a features extraction module for isolated handwritten Arabic characters. The collected core features are based on pixels orientations according to Freeman chain code. The input to this module is Arabic character (in its basic-shapes i.e. without diacritics). The features extractor module, fed with a skeleton of an isolated character basic-shape, yields global and local featu...
متن کاملA Comprehensive Isolated Farsi/Arabic Character Database for Handwritten OCR Research
This paper presents a new comprehensive database for isolated offline handwritten Farsi/Arabic numbers and characters for use in optical character recognition research. The database is freely available for academic use. So far no such a freely database in Farsi language is available. Grayscale images of 52,380 characters and 17,740 numerals are included. Each image was scanned from Iranian scho...
متن کاملNeural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten
Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008